Applications
Discover the most recent research and publications on quantum sensing
How to get nanodiamond into cells?
Effect of medium and aggregation on antibacterial activity of nanodiamonds
Fluorescent nanodiamonds, used in diverse applications, display varying biocompatibility with bacteria, unlike their known compatibility in mammalian cells. This article reviews and experiments with different bacterial strains, nanoparticle sizes, and chemistries, revealing that particle aggregation and bacterial clumping can erroneously suggest bactericidal effects. The study concludes that these aggregations and the bacteriostatic effects of nanodiamond attachment are key factors in the observed results, rather than any specific material property of the nanodiamonds.
Materials science & engineering c-Biomimetic and supramolecular systems (2020)
Quantum Monitoring in Mitochondria
Quantum monitoring of cellular metabolic activities in single mitochondria
The study highlights the use of relaxometry in diamond magnetometry for precise detection of free radicals in cells, specifically targeting mitochondria within macrophages. The research showcases the versatility of functional nanodiamonds in biomedical applications due to their biocompatibility and unique ability to convert magnetic to optical signals, marking a significant advancement in understanding cellular processes at the nanoscale.
Science Advances (2021)
Review on Nanodiamonds in Cells
Nanodiamonds and Their Applications in Cells
Explore the use of nanodiamonds in cellular applications, highlighting their unique properties such as stability and biocompatibility, which make them suitable for drug delivery, biological labeling, and quantum sensing. Nanodiamonds can be ingested by cells, with their biocompatibility and cytotoxic effects varying across cell lines.
Small (2018)
Review on Nanodiamonds in Organisms
Nanodiamonds for In Vivo Applications
Delve into the multifaceted applications of nanodiamonds (NDs), including their use in drug delivery, cancer therapy, and biomedical implants. These tiny diamonds are prized for their unique optical properties and quantum sensing capabilities, making them ideal for delivering drugs and genetic materials directly to target areas, thereby enhancing treatment efficacy while minimizing side effects. Notably, their application extends to improving the mechanical properties of composites in medical implants, like promoting bone formation, due to their hardness and customizable surface.